Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
An Acad Bras Cienc ; 94(suppl 4): e20220029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36477823

RESUMO

In freshwater, saxitoxins (STX) are produced by different cyanobacteria genera, including Raphidiopsis. Data regarding cytogenotoxicity effects of STX on human cells are scarse, this merit further studies of its toxicology. This study assessed the cytotoxicity and the chromosome instability of STX on SHSY-5Y human cell line. The CBMN assay allows the detection of chromosome breaks and abnormal chromosomal segregation. Additionally, in silico systems biology approach, used to search for known and predicted interaction networks, was applied to study the interactions between STX and SHSY-5Y cellular components. The results of the CBMN assay demonstrated that STX concentrations of 2.5 - 10 µg/L induced cytostasis and chromosome instability in a dose-response relationship. Apoptosis was detected after exposure of SHSY-5Y cultured cells to STX concentration of 10 µg/L. The results of the systems biology analysis revealed the interaction of STX with proteins related with acetylcoline pathway, cell cycle regulation and apoptosis. Furthermore, combining the in vitro and in silico approachs, it was possible to suggest a mechanism of action of STX in SHSY-5Y cells. Overall, the data demonstrated the cytotoxicity and mutagenicity of environmentally relevant concentrations of STX. These results should be considered when setting up guidelines for monitoring STX in water supply.


Assuntos
Saxitoxina , Biologia de Sistemas , Humanos , Saxitoxina/toxicidade , Instabilidade Cromossômica , Linhagem Celular
2.
Int. j. high dilution res ; 21(2): 11-12, May 6, 2022.
Artigo em Inglês | LILACS, HomeoIndex - Homeopatia | ID: biblio-1396742

RESUMO

Cyanobacteria are microorganisms found in different parts of the world. Some genera are cyanotoxins producers a sodium channel blockingneurotoxin (saxitoxins). Some homeopathic preparations have been identified as remedial action on toxicity models in Artemia salina. This study aimed to observe whether homeopathic products influence the toxicity ofR.raciborskiiextract onA.salinaby inducing cyst hatching arrest, anembryo bioresiliencemodel previously developed in our laboratory (Pinto et al., 2021; Mohammad et al., 2022). Thus, previous toxicity testswere carried out on cysts in 96-well plates, using different concentrations of the extract obtained from regular cultivation of R. raciborskii in HCl 0.05M, whose strain, named T3, is kept in the laboratory of Cyanobacteria at FURGS, Brazil.The standardization of toxin concentration was based on an established scale developed at FURGS, in which the number of T3 filaments is associated withspecific saxitoxin concentrationsdefined by chromatography. The concentration of 2.6 µg/L was chosen since it reducedthe cysthatching rate by 30%, the ideal level to observe embryo bioresilience. Then, a screeningstudy with 22 homeopathic preparations was tested blind in three experimental series, in duplicate,against threecontrols (unchallenged, water,and succussed water)for possible toxicity attenuationon Artemia salinacysts hatching rate. Homeopathic medicines were prepared in pure,sterile water from a stock homeopathic solution, one potency below the working potency. After the 1:100 dilution, 100 succussions were made using a robotic arm (Denise, Autic). The medicines were inserted into the seawater on a 10% basis. Due to the high sensitivity of A. salinato the circalunar variations, all experiments were performed during the first quarter moon. Statistical analysis was performed by two-way ANOVA followed by Tukey, with α=0.05. The most significant results indicative of bioresilience improvement were seen after the treatment with Nitric acidum6 cH, Plumbum metallicum6 cH, isotherapic 200 cH, and hydrochloric acid 1 cH being the last one used as a vehicle of the extracts. Thus, these preparations were chosen to be used in further experiments. In conclusion, the Artemia salinamodel has also beenuseful to study bioresilienceimprovement by homeopathic medicines after intoxication with saxitoxin.


Assuntos
Artemia/virologia , Biodegradação Ambiental , Veículos Homeopáticos , Cianobactérias
3.
Aquat Toxicol ; 246: 106148, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35364510

RESUMO

Saxitoxin (STX) is a neurotoxic cyanotoxin that also generate reactive oxygen species, leading to a situation of oxidative stress and altered metabolism. The Amazonian fruit açaí Euterpe oleracea possesses a high concentration of antioxidant molecules, a fact that prompted us to evaluate its chemoprotection activity against STX toxicity (obtained from samples of Trichodesmium sp. collected in the environment) in the shrimp Litopenaeus vannamei. For 30 days, shrimps were maintained in 16 aquaria containing 10 shrimps (15% salinity, pH 8.0, 24 °C, 12C/12D photoperiod) and fed twice daily with a diet supplemented with lyophilized açaí pulp (10%), in addition to the control diet. After, shrimps (7.21 ± 0.04 g) were exposed to the toxin added to the feed for 96 h. Four treatments were defined: CTR (control diet), T (lyophilized powder of Trichodesmium sp. 0.8 µg/g), A (10% of açaí) and the combination T + A. HPLC analysis showed predominance of gonyautoxin-1 concentrations (GTX-1) and gonyautoxin-4 concentrations (GTX-4). The results of molecular docking simulations indicated that all variants of STX, including GTX-1, can be a substrate of isoform mu of the glutathione-S-transferase (GST) enzyme since these molecules obtained similar values of estimated Free Energy of Binding (FEB), as well as similar final positions on the binding site. GSH levels were reduced in muscle tissues of shrimp in the T, A, and T + A treatments. Increased GST activity was observed in shrimp hepatopancreas of the T treatment and the gills of the A and T + A treatments. A decrease of protein sulfhydryl groups (P-SH) was observed in gills of shrimps from T + A treatment. A reduction in malondialdehyde (MDA) levels was registered in the hepatopancreas of the T + A treatment in respect to the Control, T, and A treatments. The use of açaí supplements in L. vannamei feed was able to partially mitigate the toxic effects caused by Trichodesmium sp. extracts, and points to mu GST isoform as a key enzyme for saxitoxin detoxification in L. vannamei, an issue that deserves further investigation.


Assuntos
Euterpe , Penaeidae , Poluentes Químicos da Água , Animais , Euterpe/química , Simulação de Acoplamento Molecular , Saxitoxina/toxicidade , Poluentes Químicos da Água/toxicidade
4.
Harmful Algae ; 103: 102004, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33980444

RESUMO

Raphidiopsis raciborskii (formerly Cylindrospermopsis raciborskii) is a freshwater cyanobacterium potentially producing saxitoxins (STX) and cylindrospermopsin. Its ecophysiological versatility enables it to form blooms in the most diverse types of environments, from tropical to temperate, and from relatively pristine to polluted. In Peri Lake, located in the subtropical south of Brazil, growing populations of STX-producing R. raciborskii have been detected since 1994, posing risks to the use of its waters that supply a population of about 100,000 inhabitants. Despite the existence of a monitoring system for the presence and toxicity of cyanobacteria in Peri Lake water, no assessment has been made in the coastal region, downstream of outflowing lake water, thereby potentially making available a toxic biomass to natural and cultivated shellfish populations in the salt water ecosystem. To address this problem, the present study evaluated environmental variables and STX concentration by profiling the outflowing waters between Peri Lake and the adjacent coastal zone. Laboratory experiments were carried out with three strains of R. raciborskii in order to confirm the effect of salinity on STX production and verify if Perna Perna mussels fed with R. raciborskii cultures would absorb and accumulate STX. Results showed that environmental concentrations of STX reach high levels (up to 6.31 µg L-1 STX eq.), especially in the warmer months, reaching the coastal zone. In laboratory tests, it was found that the strains tolerate salinities between 4 and 6 and that salinity influences the production of STX. In addition, mussels fed with R. raciborskii effectively absorb and accumulate STX, even in typically marine salinities (22 to 30), suggesting that R. raciborskii biomass remains available and toxic despite salinity shock. These results draw attention to the ecological and health risk associated with R. raciborskii blooms, both in the lake environment and in the adjacent marine environment, calling attention to the need to improve the monitoring and management systems for water and shellfish toxicity in the region of interest, as well as other places where toxic cyanobacteria of limnic origin can reach the coastal zone.


Assuntos
Bivalves , Cianobactérias , Animais , Brasil , Cylindrospermopsis , Ecossistema , Saxitoxina
5.
Toxicon ; 184: 215-228, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32593754

RESUMO

An assessment of the major pigments and neurotoxins and a description of the phytoplankton community were carried out within the coastal region of Rio de Janeiro State (Brazil), during winter and the following spring of 2018. Overall, six stations were investigated for oceanographic conditions (with CTD casts). Filtered water samples were used to estimate the chlorophyll a (CHL-a), carotenoids (CAR), and phycobiliproteins (PHY) using UV-Vis spectrophotometry, as well as the quantification of saxitoxins (STX) and domoic acid (DA), through High Performance Liquid Chromatography (HPLC). Planktonic organisms were counted using sedimentation chambers of different volumes and an inverted microscope. A cluster analysis, SIMPER, and ANOSIM were applied to the phytoplankton data along with diversity indexes, and non-parametric statistics to phycotoxins and pigments. There was a significant difference between the winter and spring phytoplankton community, associated with the mixed layer depth (r2 = -0.626, p < 0.05) and temperature (r2 = 0.641, p < 0.05). Phytoplankton biomass and C:CHL-a indicated a higher production during the winter than in spring, with the potentially toxic genus Pseudo-nitzschia responsible for 12.79% of autotrophic abundance (SIMPER output). Pigments showed a slight increase in CAR during spring, while PHY remained at trace concentrations. Both the DA and STX were quantified in winter and spring, but with significant differences only for STX between the sampling periods. Among the 71 taxa, 11 were identified as potentially toxic with an emphasis on STX-producing dinoflagellates and cyanobacteria, such as Alexandrium sp., Gymnodinium spp. along with Trichodesmium spp. Season-related environmental variability may be the major driving force modulating the mixed assemblage of species that support different levels of phycotoxins.


Assuntos
Monitoramento Ambiental , Toxinas Marinhas/toxicidade , Fitoplâncton , Biomassa , Brasil , Clorofila A , Cianobactérias , Diatomáceas , Dinoflagelados , Ácido Caínico/análogos & derivados , Toxinas Marinhas/análise , Neurotoxinas , Estações do Ano , Água do Mar , Trichodesmium
6.
Fish Shellfish Immunol ; 103: 464-471, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32450300

RESUMO

This study evaluated the effect of dietary inclusion of lyophilized açaí Euterpe oleracea (LEO) on redox status of shrimp Litopenaeus vannamei (initial weight 1.5 ± 0.39 g) upon exposure to cyanotoxin nodularin (NOD) in bioflocs system. Three hundred juvenile shrimps were randomly divided into two groups and fed twice a day with two diets: one containing 0.00 (control diet) and the other 10.0% LEO (w/w) for 30-days. After the feeding period, both shrimp groups were submitted to three treatments (14 L; 7 shrimp/tank) with different concentrations of cyanotoxin NOD (0.00; 0.25; and 1.00 µg/L) dissolved in water with 96 h of exposure. Then, the shrimps were sampled (n = 15/treatment) for the determination of reduced glutathione (GSH), the activity of glutathione-S-transferase (GST), sulfhydryl groups associated to proteins (P-SH), and lipid peroxidation (TBARS) in the hepatopancreas, gills and muscle. The NOD accumulation was measured in the muscle. The results revealed that dietary LEO significantly increased GSH levels in the hepatopancreas and gills of the shrimps exposed to NOD. Toxin exposure did not modify GST activity in all organs. Muscle TBARS levels were lower in the shrimp fed with the LEO diet and exposed to NOD. The NOD toxin did not accumulate in the muscle but notably was detected in the control groups fed or not with dietary LEO. Açaí was able to induce the antioxidant system of L. vannamei, as well as lowered the oxidative damage in shrimps exposed to NOD, suggesting its use as a chemoprotectant against cyanotoxins.


Assuntos
Toxinas Bacterianas/toxicidade , Suplementos Nutricionais/análise , Euterpe/química , Toxinas Marinhas/toxicidade , Penaeidae/imunologia , Peptídeos Cíclicos/toxicidade , Substâncias Protetoras/farmacologia , Ração Animal/análise , Animais , Dieta/veterinária , Liofilização , Nodularia , Oxirredução , Distribuição Aleatória
7.
Environ Toxicol ; 35(5): 591-598, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31916382

RESUMO

Microcystins (MCs) are potent toxins produced by environmental cyanobacterial blooms. The present study evaluated the effects of a Microcystis aeruginosa cyanobacterial lysate containing 0.1, 1, and 10 µg L-1 MC-LR equivalent in the C. elegans Bristol N2 wild-type and the effects caused by equivalent concentrations of a MC-LR standard. The lysate was prepared from a culture of toxic strain (RST9501) originated from the Patos Lagoon Estuary (RS, Brazil). The minimal concentration necessary to cause significant effects in C. elegans under exposure to M. aeruginosa lysate or to MC-LR standard were, respectively, 10 and 0.1 µg L-1 MC-LR equivalent for growth and 10 and 1 µg L-1 MC-LR equivalent for fertility. Reproduction (ie, brood size) was only affected by the exposure to 10 µg L-1 MC-LR standard and was not affected by the lysate. The nematodes that were exposed to lysate containing 1 µg L-1 MC-LR equivalent or MC-LR were also analyzed for pharyngeal pumping and gene expression using RT-qPCR. The worms' rhythmic contractions of the pharynx were similarly affected by the lysate containing 1 µg L-1 of MC-LR equivalent and the MC-LR standard. The MC-LR standard caused down-regulation of genes related to growth (daf-16), fertility (spe-10), and biotransformation (gst-2). This is the first study to evaluate the effects of a toxic cyanobacterial lysate using the C. elegans model. This study suggests the organism as a potential biotest to evaluate toxicity of natural waters containing M. aeruginosa cells and to environmental risk assessment associated to cyanobacterial bloom events.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Microcistinas/toxicidade , Microcystis/química , Poluentes Químicos da Água/toxicidade , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Toxinas Marinhas , Microcistinas/isolamento & purificação , Microcystis/metabolismo , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/isolamento & purificação
8.
Toxicon ; 167: 101-105, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31125620

RESUMO

Domoic acid (DA) or Amnesic Shellfish Poisoning (ASP) produced by the genus Pseudo-nitzschia diatom was investigated in two seasonal periods in fishing areas of Katsuwonus pelamis in the South Atlantic Ocean. Higher DA concentrations were found in spring compared to winter. Pseudo-nitzschia spp. more quantified in winter than in spring, while P. pungens, a species among the most reported for an AD toxic potential, was only found in spring.


Assuntos
Monitoramento Ambiental , Ácido Caínico/análogos & derivados , Fitoplâncton/química , Água do Mar/química , Oceano Atlântico , Brasil , Ácido Caínico/análise , Estações do Ano
9.
Ecotoxicol Environ Saf ; 173: 436-443, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30798187

RESUMO

This study investigated the effect of microcystin-LR (MC-LR) on in vivo cardiorespiratory function and on tissue biomarkers of oxidative stress in gills and liver of the trahira, a neotropical freshwater fish. Trahira were treated with an intraperitoneal injection of 100 µg MC-LR.kg-1 body mass or a saline, with the toxic effects of MC-LR then evaluated after 48 h. Rates of oxygen uptake (V̇O2) did not differ significantly between Control and the exposed group (Mcys), but exposure to MC-LR significantly reduced O2 extraction in the Mcys group at all O2 tensions. This was associated with higher gill ventilation volume (V̇G) in the Mcys group at all O2 tensions except 140 and 120 mmHg, and a higher tidal volume (VT) of the Mcys group at all tensions except 140 mmHg. Heart rate was also higher in the Mcys group, significantly so at an O2 tension of 40 mmHg. In the liver of trahira, exposure to MC-LR has significant effects on antioxidant defense systems, inducing a significant increase in the activity of the (GPx) glutathione peroxidase enzyme (100%) and in the reduced glutathione (GSH) content (70%) compared to the control group, but no effects on superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) enzymes. The liver showed no oxidative damage, when measured as lipid peroxidation (LPO) levels and protein carbonyl (PC) content. In the gills SOD and GPx enzyme activity increased significantly in the Mcys group (98% and 73% respectively) compared to the controls, although GSH, CAT and GST did not differ between groups. There was also no significant difference in GSH in this tissue. Levels of lipid peroxidation in the gills were 53% higher in the Mcys group, although carbonyl protein levels did not differ. In conclusion, these data show that MC-LR leads to development of hyperventilation and increased activity of the detoxification system and that this species was able to compensate the deleterious effects of microcystin on its vital functions. The antioxidant defense in the liver was able to contain the propagation of LPO and prevent the oxidation of proteins, although the gills of the fishes exposed to MC-LR were not able to contain the formation of reactive oxygen species and LPO, which led to the establishment of oxidative stress which impaired gill function.


Assuntos
Caraciformes/fisiologia , Microcistinas/toxicidade , Animais , Catalase/metabolismo , Proteínas de Peixes/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/fisiologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Inativação Metabólica , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Toxinas Marinhas , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
10.
Front Microbiol ; 9: 1727, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108575

RESUMO

Cyanobacterial blooms in marine and freshwater environments may be favored by shifts in physical water column parameters due to warming under climate change. The Patos Lagoon (PL), a subtropical coastal environment in southern Brazil, is known for recurrent blooms of Microcystis aeruginosa complex (MAC). Here, we analyze the variability of these blooms and their relation to changes in wind direction and speed, rainfall and freshwater run-off from 2000 to 2017. Also, we discuss both longer time-series of air temperature and rainfall and a review of local studies with microcystins produced by these noxious species. Since the 1980s, MAC blooms were associated to negative anomalies in annual precipitation that occur during La Niña periods and, in the last years (2001-2014), accompanied by a trend in low river discharge. MAC blooms were conspicuous from December to March, i.e., austral summer, with massive patches seen in satellite images as for 2017. We suggest that low rainfall and run-off years under NE wind-driven hydrodynamics might accumulate MAC biomass in the west margin of the PL system. In contrast, a positive, long-term trend in precipitation (from 1950 to 2016; slope = 3.9868 mm/yr, p < 0.05) should imply in high river discharge and, consequently, advection of this biomass to the adjacent coastal region. Due to the proximity to urban areas, the blooms can represent recreational and economic hazards to the region.

11.
Zebrafish ; 15(5): 454-459, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30044200

RESUMO

Microcystin-leucine arginine (MC-LR) is a natural toxin produced by cyanobacterial blooms that causes severe liver damage in fish. It is crucial to investigate if housekeeping genes are affected by MC-LR in zebrafish, to permit the adequate evaluation of gene expression by RT-qPCR. We evaluated the gene expression stability (M value) and regulation by chemical treatment (using E-Ct and E-ΔCt) to validate the use of eight housekeeping genes in fish exposed to 0, 0.31, and 6.10 µg L-1 MC-LR for 24 h. We suggest the use of the combination of ß-actin1, b2m, and arnt2 in the liver and ß-actin1, 18S rRNA, and arnt2 in gills as housekeeping genes. The evaluation of gene regulation following MC-LR exposure denoted a strong repression of 18S rRNA (17- and 10-fold decrease) and tbp (10- and 2-fold decrease) and induction of ef-1α (8- and 14-fold increase) in the liver of zebrafish exposed to 0.31 and 6.10 µg L-1 MC-LR, respectively. This is the first study showing that housekeeping genes commonly used in gene expression could be affected in the liver by environmentally relevant concentrations of MC-LR. The study validates adequate housekeeping genes that could be used in toxicological studies with MC-LR in zebrafish.


Assuntos
Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Essenciais , Fígado/metabolismo , Microcistinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Fígado/efeitos dos fármacos , Toxinas Marinhas , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Peixe-Zebra
12.
Ecotoxicol Environ Saf ; 161: 729-734, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29957580

RESUMO

Cyanobacterial blooms of Microcystis aeruginosa represent a significant risk to the environment and have become a worldwide concern. M. aeruginosa can produce the hepatotoxins microcystins (MCs) with potential for tumor promotion. The present study evaluated the time-dependent effects in the transcription of tumor-related genes in the zebrafish, Danio rerio, exposed to dilutions of a M. aeruginosa lysate containing 3.5 and 54.6 µg L-1 MCs. We used a cultured M. aeruginosa strain, RST 9501, which contains mainly the variant [D-Leu1] MC-LR and originated from the Patos Lagoon Estuary (RS, Brazil). The exposure caused short-term repression of tumor suppressor genes and long-term repression of proto-oncogenes. These responses were more evident for p53 that was repressed with exposure for 6, 24 and 96 h, and fosab and myca that were consistently repressed with exposure for 384 h, when fish were exposed to both M. aeruginosa lysate dilutions, compared to controls (p < 0.05). The suppressor genes, baxa and gadd45α, and the proto-oncogene, junba, were suppressed mainly at 96 h, where both dilutions of the lysate caused repression compared to controls (p < 0.05). The p53 gene was the only gene to be induced; this occurred in fish exposed to lysate containing 3.5 µg L-1 for 384 h. This is the first study to show that M. aeruginosa containing an environmentally relevant concentration of [D-Leu1] MC-LR could cause time-dependent repression of proto-oncogenes and tumor suppressor genes in fish. The results suggest that short-term repression of tumor suppressor genes could participate in the mechanism of tumor promotion caused by M. aeruginosa in fish.


Assuntos
Genes Supressores de Tumor/efeitos dos fármacos , Microcistinas/toxicidade , Microcystis , Proto-Oncogenes/efeitos dos fármacos , Animais , RNA Mensageiro/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
13.
Toxicology ; 393: 171-184, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29128272

RESUMO

Saxitoxins (STXs) are potent neurotoxins that block voltage-gated channels in neurons and induce cytotoxicity. These toxins not only can generate reactive oxygen species but also can alter antioxidant levels, promoting oxidative stress. Under this pro-oxidant situation, the use of the antioxidant lipoic acid (LA) can represent a chemoprotective alternative to minimize the deleterious effects induced by neurotoxins as STXs. P-glycoprotein (P-gp) is a well-known ATP-binding cassette (ABC) transporter that plays a crucial role in the extrusion of toxic substances, decreasing their accumulation and potential intracellular effects in virtue of its broad substrate specificity, its expression in many excretory tissues and its large efflux capacity. The interaction of STXs with LA was evaluated by ab initio simulation, molecular docking and bioassays using the cell line HT-22. The interaction of STXs with LA occurs by physisorption. Molecular docking indicated that STXs can be a substrate of P-gp and, estimating the Free Energy of Binding (FEB), LA has lower amino acids residues binding sites, similar to verapamil, while STX and STX+LA_1 have similar amino acids residues and binding sites with similar FEB between this ligands.Cells were exposed to STXs and LA for 30min and 24h. LA treatment minimizes STX cytotoxicity, evaluated by trypan blue and MTT assay and both STX and STX-LA treatments were efficient to induce P-gp activity measured by rhodamine 123 dye extrusion. LA and STX+LA treatments induced low reactive oxygen species levels and low oxygen consumption. Based on our results, it can be concluded that LA was able to induce cytoprotection, including induction of cellular glutathione levels, and that STX+LA interaction reduced toxicity effects induced by STX. Overall, the in vitro results corroborated the semi-empirical evidences found using density functional theory ab initio simulation and molecular docking.


Assuntos
Antioxidantes/farmacologia , Saxitoxina/toxicidade , Ácido Tióctico/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Hipocampo/citologia , Camundongos , Simulação de Acoplamento Molecular , Consumo de Oxigênio/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
14.
Toxicon ; 139: 109-116, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024772

RESUMO

Microcystin's (MCs) are toxins produced by several groups of cyanobacteria, in water bodies throughout the world, in a process which is being intensified by human action. Among the variants of MCs, MC-LR stands out for its distribution and toxicity. MCs are potent inhibitors of protein phosphatases 1 and 2 A, which causes disruption of the cytoskeleton and consequent cell death. They can also alter the antioxidant system and induce oxidative stress in various organs of many species. There is, however, a lack of information about the effects of MCs on the antioxidant system and oxidative damage in Brazilian fishes. This study evaluated the effect of microcystin-LR on the antioxidant system in liver and gills of the Brazilian fish Brycon amazonicus, after 48 h of i.p injection of 100 µg MC-LR.kg-1 body mass. The liver exhibited increases in the activity of GST (74%) and GPx (217%), and a 47% decrease in SOD activity, with no changes in CAT values. In the gills of fish exposed to MC-LR, CAT and GPx activities did not show significant changes, while SOD and GST activity decreased by 66% and 37%, respectively. The GSH content did not change significantly in the liver, however, a decrease of 43% was observed in the gills. Oxidative damage measured by protein oxidation (PC) and lipoperoxidation (LPO) showed significant effects in both tissues. In hepatic tissue, there was no change in PC levels but LPO increased by 116%. Conversely, in the gills LPO levels did not change but PC increased by 317%. In conclusion, these data show that MC-LR induces oxidative damage in both tissues but in different ways, with being liver most sensitive to LPO and gills to PC. This also suggests that the gills are most sensitive to oxidative stress than liver, due to the inhibition of its antioxidant responses following MC-LR exposure.


Assuntos
Caraciformes , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Microcistinas/toxicidade , Animais , Antioxidantes/metabolismo , Brasil , Brânquias/enzimologia , Injeções Intraperitoneais , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/enzimologia , Toxinas Marinhas , Estresse Oxidativo
15.
Front Microbiol ; 8: 1132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28670308

RESUMO

A new estuarine filamentous heterocystous cyanobacterium was isolated from intertidal sediment of the Lagoa dos Patos estuary (Brazil). The isolate may represent a new genus related to Cylindrospermopsis. While the latter is planktonic, contains gas vesicles, and is toxic, the newly isolated strain is benthic and does not contain gas vesicles. It is not known whether the new strain is toxic. It grows equally well in freshwater, brackish and full salinity growth media, in the absence of inorganic or organic combined nitrogen, with a growth rate 0.6 d-1. Nitrogenase, the enzyme complex responsible for fixing dinitrogen, was most active during the initial growth phase and its activity was not different between the different salinities tested (freshwater, brackish, and full salinity seawater). Salinity shock also did not affect nitrogenase activity. The frequency of heterocysts was high, coinciding with high nitrogenase activity during the initial growth phase, but decreased subsequently. However, the frequency of heterocysts decreased considerably more at higher salinity, while no change in nitrogenase activity occurred, indicating a higher efficiency of dinitrogen fixation. Akinete frequency was low in the initial growth phase and higher in the late growth phase. Akinete frequency was much lower at high salinity, which might indicate better growth conditions or that akinete differentiation was under the same control as heterocyst differentiation. These trends have hitherto not been reported for heterocystous cyanobacteria but they seem to be well fitted for an estuarine life style.

16.
Environ Toxicol Chem ; 36(7): 1728-1737, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27371805

RESUMO

Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 104 cells/mL) were exposed to SWCNT and SWCNT-COOH (5 µg mL-1 ), STX (200 µg L-1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC.


Assuntos
Proliferação de Células/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Saxitoxina/toxicidade , Ácidos Carboxílicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Nanotubos de Carbono/química , Espécies Reativas de Oxigênio/metabolismo , Saxitoxina/química , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Artigo em Inglês | MEDLINE | ID: mdl-27190499

RESUMO

BACKGROUND: Blooms of the saxitoxin-producing cyanobacterium Cylindrospermopsis raciborskii have been contaminating drinking water reservoirs in Brazil for many years. Although acute effects of saxitoxin intoxication are well known, chronic deleterious outcomes caused by repeated saxitoxin exposure still require further investigation. The aim of the present work is to investigate the effects of consumption of drinking water contaminated with C. raciborskii for 30 days on learning and memory processes in rats. METHODS: The effects of saxitoxin (3 or 9 µg/L STX equivalents) or cyanobacteria on behavior was determined using the open field habituation task, elevated plus maze anxiety model task, inhibitory avoidance task, and referential Morris water maze task. RESULTS: No effects of saxitoxin consumption was observed on anxiety and motor exploratory parameters in the elevated plus maze and open field habituation tasks, respectively. However, groups treated with 9 µg/L STX equivalents displayed a decreased memory performance in the inhibitory avoidance and Morris water maze tasks. CONCLUSIONS: These results suggest an amnesic effect of saxitoxin on aversive and spatial memories.

18.
Toxicon ; 110: 51-5, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26695000

RESUMO

Harmful Trichodesmium blooms have been reported on the continental slope of the southwestern South Atlantic Ocean; we sampled six such blooms. The highest saxitoxin concentration was observed where the number of colonies was proportionally greater relative to the total density of trichomes. Trichodesmium blooms are harmful to shrimp larvae and may lead to plankton community mortality. This study is the first record of neurotoxic blooms in the open waters of the South Atlantic.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Proliferação Nociva de Algas , Oceano Atlântico , Brasil , Cianobactérias/química , Monitoramento Ambiental , Neurotoxinas/análise , Neurotoxinas/toxicidade , Saxitoxina/análise , Saxitoxina/toxicidade , Análise Espaço-Temporal
19.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954794

RESUMO

Background: Blooms of the saxitoxin-producing cyanobacterium Cylindrospermopsis raciborskii have been contaminating drinking water reservoirs in Brazil for many years. Although acute effects of saxitoxin intoxication are well known, chronic deleterious outcomes caused by repeated saxitoxin exposure still require further investigation. The aim of the present work is to investigate the effects of consumption of drinking water contaminated with C. raciborskii for 30 days on learning and memory processes in rats. Methods: The effects of saxitoxin (3 or 9 µg/L STX equivalents) or cyanobacteria on behavior was determined using the open field habituation task, elevated plus maze anxiety model task, inhibitory avoidance task, and referential Morris water maze task. Results: No effects of saxitoxin consumption was observed on anxiety and motor exploratory parameters in the elevated plus maze and open field habituation tasks, respectively. However, groups treated with 9 µg/L STX equivalents displayed a decreased memory performance in the inhibitory avoidance and Morris water maze tasks. Conclusions: These results suggest an amnesic effect of saxitoxin on aversive and spatial memories.(AU)


Assuntos
Saxitoxina , Água Potável , Reservatórios de Água , Cianobactérias , Cylindrospermopsis
20.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484674

RESUMO

Blooms of the saxitoxin-producing cyanobacterium Cylindrospermopsis raciborskii have been contaminating drinking water reservoirs in Brazil for many years. Although acute effects of saxitoxin intoxication are well known, chronic deleterious outcomes caused by repeated saxitoxin exposure still require further investigation. The aim of the present work is to investigate the effects of consumption of drinking water contaminated with C. raciborskii for 30 days on learning and memory processes in rats. Methods The effects of saxitoxin (3 or 9 g/L STX equivalents) or cyanobacteria on behavior was determined using the open field habituation task, elevated plus maze anxiety model task, inhibitory avoidance task, and referential Morris water maze task. Results No effects of saxitoxin consumption was observed on anxiety and motor exploratory parameters in the elevated plus maze and open field habituation tasks, respectively. However, groups treated with 9 g/L STX equivalents displayed a decreased memory performance in the inhibitory avoidance and Morris water maze tasks. Conclusions These results suggest an amnesic effect of saxitoxin on aversive and spatial memories.


Assuntos
Água Potável/análise , Água Potável/microbiologia , Cylindrospermopsis , Ratos/anormalidades , Saxitoxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...